EMPOWERING PEOPLE AND TRANSFORMING MARKETS

VILLAGE POWER 2000

The World Bank, Washington, D.C.
December 4-8, 2000

DISTRIBUTED POWER FOR RURAL ELECTRIFICATION FROM GEOTHERMAL AND BIOMASS

Dy

Lucien Y. Bronicki, Chairman ORMAT International, Inc.

ORMAT ENERGY CONVERSION TECHNOLOGY

for Biomass and Geothermal Energy for Rural Electrification and Distributed Power

- 1. Installed geothermal capacity and potential
- 2. Worldwide distribution of geothermal energy
- 3. Geothermal technologies
- 4. Present and Projected future costs of renewable energy
- 5. Geothermal energy: economical without subsidies
- 6. ORMAT experience:
 - Green before it was "fashinable"
 - Mature technology and dependable equipment
 - Applications electricity from geothermal, biomass and solar
 - ORMAT geothermal power plants in developed and developing countries
- 7. Case history: the grid connected ZUNIL Geothermal Project
- 8. The project and the financial structure
- Lessons from a Private-Public partnership: project hurdles and opportunities

Installed Geothermal Capacity (~8,000 MWe)^(**) and Worldwide Potential* (~60,000 MWe)^(*)

COUNTRY	INSTALLED ELECTRICAL	POTENTIAL FOR
	GENERATION CAPACITY	ELECTRICAL GENERATION
	MWe	MWe
USA	2,300	12,000
The Philippines	1,900	6,000
Mexico	850	1,500
Canada		250
South & Central America	360	2,000
Western Europe, incl. Icelar	nd 970	1,200
Other European countries	40	500
Indonesia	590	16,000
Japan	550	2,400
P. R. China	30	6,700
New Zealand	440	1,200
Africa, incl. Kenya	60	6,500
Others	10	3,700

^{*} Hot Fractured Rock Excluded

SOURCE: US DOE and World Geothermal Congress 2000

^{* *} As of August 2000

Direct Use of Geothermal Energy (17,000 MWt)

CONTINENT/COUNTRY

DIRECT USE INSTALLED CAPACITY (Mt)

AFRICA	121
AMERICA	<u>5,954</u>
• USA	5,366
Mexico	164
ASIA	<u>5,151</u>
• China	2,814
• Japan	1,159
EUROPE	<u>5,568</u>
• Iceland	1,469
• Turkey	820
Georgia	250
• Russia	307
• France	326
 Hungary 	391
Sweden	377
• Italy	326
• Romania	152
 Switzerland 	547
OCEANIA	318
New Zealand	308

SOURCE: World Geothermal Congress 2000 & I. B. Friedleifsoon

1. RESOURCE DISTRIBUTION

Worldwide Geothermal Energy Distribution

- Areas where Geothermal Projects are in Operation or Planned
- Geothermal areas where ORMAT plants are in operation
- Geothermal areas where ORMAT plants are planned

2. TECHNOLOGY

Conventional Geothermal Steam Power Plant

ORMAT Geothermal Power Plant

- Consumes Water:Aquifer Depletion, Power reduction
- Effluents or Expensive Abatement
- Plume
- Visual Impact
- Water Treatment Needed:Use and Disposal of Chemicals

- All Fluids Reinjected:
 Sustainable, No Power Reduction
- No Emissions (No Abatement Needed)
- O No Plume (Air Cooled Condensers)
- Low Profile
- Not Sensitive to Quality of Brine & Steam

3. COSTS Average Capital and Delivered Costs

Source: SHELL INTERNATIONAL RENEWABLES, ORMAT and BOEING

GEOTHERMAL ENERGY:

It Is Economically Feasible Without Subsidies and It Makes Business

- 1. Geothermal Energy can supply a very significant portion of new electrical for islands and many remote areas in developing countries
- 2. Geothermal Energy on a commercial scale is now competitive with fossil fuels in many areas
- 3. Geothermal plants can supply grid connected power or power for minigrids
- 4. Geothermal power is sustainable, saves import and transport of fuels, avoids emissions and contributes to the Economic Development of rural areas
- 5. Geothermal projects of sufficient scale, or bundles or smaller projects, can be privately financed, without subsidies provided there is institutional support and public political risk insurance

Green Before it was Fashionable

Solar Water Pumping System of 40 m³/day

5. ORMAT EXPERIENCE: A MATURE TECHNOLOGY Distributed Renewable Energy and Resource Recovery

700 MW of ORMAT Power Plants in operation in 20 countries

During the last decade, ORMAT's power plants have already avoided the emission of 12 million tons of CO₂ and saved 4 million tons of fuel

Geothermal, Heat Recovery, Biomass, and Solar

ORMAT ENERGY CONVERSION TECHNOLOGY for Locally Available Low Grade Heat

Advantages

- FLEXIBILITY: heat supply can be any locally available low grade heat
- LOW MAINTENANCE
- SIMPLICITY OF OPERATION
- LONG LIFE
- INSENSIBILITY TO IMPURITIES: in the heat source

Applications of

ORMAT Energy Conversion Technology

GEOTHERMAL

SOLAR

BIOMASS

WASTE HEAT

APPLICATIONS

Direct Combustion of Biomass

Corregidor Island, the Philippines

Gas from Manure Digestor

Yagur, Israel

5 MW ORMAT Solar Pond Power Plant at the Dead Sea

70 kW ORMAT Solar Pond Power Unit El Paso, Texas US only solar pond

Solar pond area 250,000m², depth 3 to 5 m., maximum bottom temp. 102°C

ORMAT Geothermal Power Plants

USA

In Developed Countries

Azores Islands

1994-1998

New Zealand

1989

1984 600 kW

Wabuska Power Plant Iceland

Bay of Plenty Power Plant

Svartsengi Power Plant

ORMAT Modular Geothermal Power Plants In Developing Countries

Leyte Optimization, 1997

Financing: Equity ORMAT 80%,

EPDCI (Japan) 10% & Itochu 10%

Term Loan: US Exim Bank

1957

Financing: all equity by ORMAT

Insurance: MIGA

CASE HISTORY: Grid Connected Zunil Geothermal Power Plant

Project Overview:

- INDE of Guatemala with IADB funds, drilled the production/injection wells through 1992 in Zunil County
- The competitive bid was issued by INDE in 1994 for the power plant at Zunil
- In international competition, ORMAT was awarded the 24 MW BOO project based on a \$0.055kWh 15 year PPA in Guatemala
- The plant, in commercial operation since mid 1999, uses 7 ORMAT Energy Converters along with the existing wells
- Guatemala may have up to 500 MW geothermal reserves

CASE HISTORY: Financial Structure of the ZUNIL Project

LESSONS FROM PUBLIC-PRIVATE PARNERSHIP PROJECTS

In Developing Countries

Project Hurdles

- Commercial and financial barriers
- Credit issue barriers
- Institutional barriers
- Power legislation barriers: changes after contract signature such as dispatchability
- Standards, specifications and lengthy and costly reviews:
 - Fixed soft costs disproportionate to small project size
 - Micro-management of the project rather than enforcement of specifications

Project Opportunities

Accelerating renewable energy deployment by public-private partnership

Public Sector Role:

Now:

- 1. Subscribe to political risks, streamline and unify procedures
- 2. Assure correct and stable institutional framework
- 3. Assist developing countries in assessing local & rural needs
- 4. Provide performance specification

Future:

- 1. Reduce subsidies for fuel and unnecessary grid
- 2. Level the playing field: internalize renewable external benefits or use market mechanism for carbon trading

Private Sector Role:

- 1. Provide all or part of equity investment
- 2. Provide the construction loans
- 3. Guaranty specifications performance and electricity prices
- 4. Provide technology transfer, O&M training and supervision

FOR MORE INFORMATION...

- Village Power 2000 CD-Rom
- ORMAT Web Site: www.ormat.com

